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Large eddy simulation of turbulent channel �ow using
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SUMMARY

In this paper an algebraic model from the constitutive equations of the subgrid stresses has been
developed. This model has an additional term in comparison with the mixed model, which represents
the backscatter of energy explicitly. The proposed model thus provides independent modelling of the
di�erent energy transfer mechanisms, thereby capturing the e�ect of subgrid scales more accurately. The
model is also found to depict the �ow anisotropy better than the linear and mixed models. The energy
transfer capability of the model is analysed for the isotropic decay and the forced isotropic turbulence.
The turbulent plane channel �ow simulation is performed over three Reynolds numbers, Re�=180; 395
and 590, and the results are compared with that of the dynamic model, Smagorinsky model, and the
DNS data. Both the algebraic and dynamic models are in good agreement with the DNS data for the
mean �ow quantities. However, the algebraic model is found to be more accurate for the turbulence
intensities and the higher-order statistics. The capability of the algebraic model to represent backscatter
is also demonstrated. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The governing equations for large eddy simulation (LES) are obtained by �ltering the Navier–
Stokes equations. The �ltering operation is de�ned by the convolution (∗) of the variables of
interest with a �lter function, G(x), of suitable width (�).

û=G(x) ∗ u (1)
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490 S. BHUSHAN AND Z. U. A. WARSI

Further, assuming that the �ltering and di�erentiation commute, the evolution of the resolved
scales of motion for an incompressible �ow are obtained as

div û=0

@ û
@t
+ ( û · grad) û=−grad p̂+ � div(grad û)− div(�)

(2)

where �= ûu − ûû is the subgrid stress (SGS) tensor which is to be modelled. It has been
identi�ed that the main e�ect of the subgrid scales is to drain energy from the resolved scales
of motion, but transfer occurs bi-directionally leading to both forward scatter and backscatter
[1, 2] of energy. Hence, a successful closure of Equations (2) requires a SGS model which
can represent these energy transfers accurately [3]. The most commonly used approach for
modelling the stresses are the eddy viscosity linear model, as proposed by Smagorinsky (SM).
Introduction of dynamic model (DSM) coe�cient evaluation [4] technique improves the ability
of the linear model to predict mean �ow quantities vastly as it estimates the energy dissipation
accurately [5]. Dynamic modelling thus accounts for backscatter of energy in an averaged
sense [6]. However, studies [7] have shown that the nonlinearity has to be introduced to
capture the backscatter e�ects, which is the foremost drawback of such models. There has
been continuous e�orts since, to model the backscatter mechanism independently rather than
in an averaged sense [8, 9]. The stochastic model is one such approach [10, 11] and provides
good results in speci�c cases. But, the universality of the approach is doubtful [12], as they
cannot account for the deterministic structure of backscatter transfers [13].
The models based on the approximation of the total velocity �eld (u) from the resolved

velocity �eld ( û), thereby computing the stresses directly from de�nition [14], are of growing
interest in the LES community. This approach is inspired from the scale-similarity models of
Bardina (cf. Reference [5]), where the total velocity was simply approximated as the resolved
scale velocity. The scale-similarity approach has been further extended, using an explicit
secondary �ltering, based on the assumption that subgrid scales copy the scales (usually
an octave) above. The secondary �ltering can subsequently be avoided by Taylor’s series
expansion of such models, leading to a gradient model [15, 16]. However, the total velocity
can be obtained directly by inverting the �ltering operation (i.e. deconvolution), Equation (1)
[14]. As the leading term of the SGS on deconvolution (usually retained [17]) is same as
that of the gradient model [18], it can be concluded that above-mentioned class of models
(although varying in details) have close ties [14]. Thus the drawbacks of the deconvolution
methods can be associated with the scale-similarity and gradient models.
As is evident the deconvolution requires a non-zero �lter transfer function, thus Gaussian

�lters are commonly used. Application of such smooth �lters attenuates the e�ect of the small
scales, but the resolved scale motion has a wide spectral realization. The exact computation
of the SGSs through deconvolution requires information of the resolved scales of the order of
DNS resolution. This is the reason for their high correlation in a priori analysis. However, in
a posteriori simulation they are not su�ciently dissipative [14]. This aspect of the model can
be analysed assuming that the numerical grids lead to a sharp spectral cut-o� [19], thereby
separating the �ow variables into �ltered ( �u) and unresolved (u′′) quantities. The solution of
the equations of motion provides information for the �ltered-resolved quantities ( ũ∼ �̂u) and
the unknown stress terms are

�= ûu − �̂u �̂u (3)
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Figure 1. Graphical representation of the interaction between resolved and subgrid scales
namely Leonard’s (L), cross (C) and Reynold’s (R) components as de�ned in Equation
(13), where symbol ‘←→’ represents energy transfer across scales of motion: (a) sharp

cut-o� �lter; and (b) smooth �lter.

Decomposing the total velocity �eld as the �ltered and unresolved components in Equation (3)
along with the identity that the sharp cut-o� �ltering satis�es Reynold’s assumption yields,

�= �̂u �u − �̂u �̂u+ [u′′u′′ (4)

The �rst term in the decomposition is referred to as the sub�lter stress (SFS) [19], and
represents the interaction L in Figure 1. The deconvolution method can represent these stresses
accurately, and the dominant term of the Taylor’s series expansion of SFS may be assumed
to be its representative model. That is,

�̂u �u − �̂u �̂u= �1�2(grad ũ · [grad ũ]T) (5)

The additional correlation appearing in Equation (4) represents the e�ect of unresolved
scales and corresponds to interaction of type R+C in Figure 1. Not much attention has been
paid to the modelling of this term [3] and are commonly modelled as purely dissipative eddy
viscosity term [16, 19], leading to a mixed model (MM) [14, 20].

�= 2
3KsgsI − 2C2s�2[2D̃ : D̃]1=2 D̃+ �1�2[grad ũ · (grad ũ)T − 1

3 (grad ũ : grad ũ)I] (6)

where C2s and �1 are the unknown model coe�cients, D̃ is the rate-of-strain tensor and Ksgs is
the subgrid scale kinetic energy. It has often been argued that the SFS (scale-similar) terms
are responsible for the backscatter of energy [20], justifying the use of purely dissipative
model for unresolved stresses. However, for the sharp spectral �lter the SFS terms go to zero
(as evident from Figure 1) and so does the backscatter of energy, which is not consistent with
the DNS results [1]. Studies show that most of the backscatter is via the non-local interaction
represented by unresolved scales in Equation (4) [12, 21]. Hence, the modelling of these
correlations as purely dissipative (eddy viscosity) term does not provide proper modelling of
backscatter.
The purpose of this paper is to propose an algebraic model (AM) obtained directly from

the constitutive equations of the SGSs, which is discussed in the following section. The AM
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provides an additional term over the mixed model, which models the forward and backscatter
phenomenon via the unresolved scale correlation explicitly. The unknown model coe�cients
are computed in the framework of isotropic turbulence in Section 3, to provide the appropriate
amount of energy dissipation. The capability of the model to predict stress anisotropy is tested
in Section 4, and its energy transfer capability assessed in Section 5 for isotropic turbulence
simulations. The model performance is also compared with SM and MM. In Section 6 tur-
bulent channel �ow simulations have been performed over the Reynolds numbers Re�=180,
395 and 590. The model performance is compared with the SM, DSM, and the DNS [22]
results. Finally, some conclusions are drawn in Section 7.

2. ALGEBRAIC MODEL

The transport equation of SGSs (3) can be obtained from the Navier–Stokes equations, which
in component form is written as

D̃
Dt
�ik =−

[
@ ]uiujuk
@xj

− @ũi�kj
@xj

− @ũj�ik
@xj

− @ũk�ij
@xj

− @ũi ũj ũk
@xj

]
−1
�

[
@p̃ui�kj
@xj

− @p̃ũi�kj
@xj

+
@p̃uk�ij
@xj

− @p̃ũk�ij
@xj

]
+
1
�

[
p
@̃uk
@xi

−p̃@ũk
@xi

+ p
@̃ui
@xk

−p̃@ũi
@xk

]

+ �∇2�ik − 2�
[
]@ui
@xl
@uk
@xl

− @ũi
@xl

@ũk
@xl

]
−
[
�ij
@ũk
@xj

+ �kj
@ũi
@xj

]
(7)

where the substantive derivative is

D̃
Dt
=
@
@t
+ ũk

@
@xk

Introducing a set of generalized central moments for subgrid scales [23]

�(ui; uj) = ũiuj − ũi ũj

�(ui; uj; uk) = ]uiujuk − ũi�(uj; uk)− ũj�(uk ; ui)− ũk�(ui; uj)− ũi ũj ũk

the terms on right of Equation (7) can be expressed in terms of di�usion, dissipation,
production and pressure–strain correlation [5, 24].

Pij =−
[
�ik
@ũj
@xk

+ �kj
@ũi
@xk

]
Qij = �

(
p
�
;
@ui
@xj

+
@uj
@xi

)
Fij =− @

@xk

[
�(ui; uj; uk) + �

(
p
�
; ui�kj + uj�ik

)]
�ij =2��

(
@ui
@xk
;
@uj
@xk

)
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The subgrid scale kinetic energy, Ksgs = 1
2 (ũiui − ũi ũi), equation is obtained from the summa-

tion of Equation (7) as

@Ksgs
@t

+ ũk
@Ksgs
@xk

=P +D − �+ �∇2Ksgs (8)

where P= 1
2Pii; D=

1
2Fii; �=

1
2�ii and Qii=0 (from the continuity equation). As the SGSs

have been cast in the framework of RANS (Reynold’s averaged Navier–Stokes) stresses [25],
similar modelling procedure can be applied. However, it must be noted that the correlations
de�ned above have been expressed as generalized subgrid moments, which contain the physical
aspect of the SGS. The modelling of these correlations, although analogous to RANS stresses,
must be understood in terms of subgrid moments. The salient points in the modelling of these
correlations are discussed in Appendix A (also refer to Reference [25]). The algebraic stress
closure for the SGS, where Tij= �ij=Ksgs, are

Tij(P − �)=Pij +Qij − �ij (9)

2.1. Deductive iteration

On introducing the quantity

Mij=
Ksgs
�
@ũi
@xj

in the modelling of Pij and Qij (cf. Appendix) and following Warsi [25] a deductive iterative
scheme for solving Equation (9) is formulated as follows:

a0T
(n+1)
ij = T (n)ij T

(n)
kl Mkl + 2

3�ij[a0 + (�0 − 1− 	)T (n)kl Mkl]

−�[Mij +Mji]− �0[T (n)ik Mjk + T
(n)
jk Mik] + 	[T

(n)
ik Mkj + T

(n)
jk Mki] (10)

For the zeroth-order approximation we assume isotropic form of the stress tensor
(�(0)ij =

2
3Ksgs�ij). Upon substitution the �rst-order approximation is obtained as follows:

�(1)ij =
2
3
Ksgs�ij − 2AK

2
sgs

�
D̃ij (11)

where A=(�+ 2=3�0 − 2=3	)=a0. As evident, Equation (11) is the eddy viscosity model. The
second-order approximation of the stress terms can be obtained similarly. Keeping the terms
of interest and expressing turbulent kinetic energy and dissipation in terms of �lter width (�)
[24]. The algebraic stress model thus obtained is expressed in coordinate-invariant form as
follows:

�= 2
3KsgsI − 2C2s �2[2D̃ : D̃]1=2 D̃+ �1�2[grad ũ · (grad ũ)T − 1

3 (grad ũ : grad ũ)I]
−�2�2[(grad ũ)T · grad ũ − 1

3 (grad ũ : grad ũ)I] (12)

Comparing Equations (6) and (12), it is observed that AM provides an additional term over
the mixed model. The role of the model terms in the energy transfer mechanism can be
studied by the closure of SGSs with the rate-of-strain tensor in the canonical approach
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(cf. Appendix B). The second term is purely dissipative in nature, whereas (for positive
model coe�cient) the fourth term provides backscatter of energy. Essentially, the eddy vis-
cosity and backscatter terms in Equation (12) represent the unresolved stresses in Equation
(4), as opposed to eddy viscosity in MM. Thus the AM provides a better modelling of the
energy transfer mechanism. Similar terms were also obtained by Horiuti [26] and are present
in LANS-� model [27], but their energy transfer capability were not explored. The evaluation
of the unknown model coe�cients, to produce appropriate amount of energy dissipation, is
discussed below.

3. ENERGY TRANSFER

The decomposition of SGSs in Equation (4) as L;C and R is now carried out as follows.
Substituting (u′′= u′ + ũ − �u) in Equation (4), the SGSs are partitioned as

� = (˜̃u ũ − ˜̃u ˜̃u)
L

+
(˜̃uu′ − ˜̃u ũ′) + (ũ′ ũ − ũ′ ˜̃u)

C
+
(ũ′u′ − ũ′ ũ′)

R
(13)

These stress terms can also be obtained directly by introducing the velocity decomposition
(u= ũ + u′) in Equation (3) (involves numerical �ltering implicitly). These stress terms are
Galilean invariant and are called the modi�ed Leonard’s, cross and Reynolds’ stresses [23].
In this regard refer to Figure 1 [19]. The above decomposition of stresses helps to estimate
the amount of energy transferred via di�erent scale interactions. The analysis of these energy
transfer processes can be accomplished either in physical space or in spectral space using the
eddy damped quasi-normal Markovian (EDQNM) theory. The triad interaction (k=k′ + k′′)
associated with these components are summarized as [2, 5]:

�L : k¡ kc; k′ ¡ kc; k′′ ¡ kc
�C : k¡ kc; kc ¡ max(k′;k′′)¡ 2kc; min(k′;k′′)¡ kc
�R : k¡ kc; k′ ¿ kc; k′′ ¿ kc

(14)

where kc is the LES cut-o� wavenumber associated with numerical �ltering, and �L, �C, �R
are the respective Fourier transforms of L, C, and R.

3.1. Modi�ed Leonard’s term (L)

This term is responsible for a substantial amount of dissipation [1, 15]. Leonard estimated
the dissipation produced by the non-Galilean-invariant de�nition of this term using triple
correlation tensor ( T̃ ij; k = 〈( ũi)A( ũj)A( ũk)B〉). Similar approach can be used to estimate the
dissipation produced by modi�ed Leonard’s term de�ned in Equation (13). The rate of energy
cascade due to this term is

�L =

〈
ũi
@˜̃ui ũj
@xj

〉
−
〈
ũi
@ ˜̃ui ˜̃uj
@xj

〉
(15)
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The �rst term on the right is the same as computed in Leonard [15] whereas, the second term
cannot be directly expressed in terms of T̃ ij; k . Applying Taylor’s expansion on this term [28]
we get〈

ũi
@ ˜̃ui ˜̃uj
@xj

〉
=
〈
ũi
@ ũi ũj
@xj

〉
+ b

[〈
ũi
@
@xj

(
ũj
@2 ũi
@xl@xl

)〉
+
〈
ũi
@
@xj

(
ũi
@2 ũj
@xl@xl

)〉]
(16)

where b=�2=24 is the second moment for the Gaussian �lter. In Equation (16) the �rst term
is zero because of the continuity equation [29] and the other terms can now be easily expressed
in terms of T̃ ij; k . The net dissipation by the modi�ed Leonard’s term is thus obtained as [24]

�L = − 35
24K

3=2
sgs K

′′′
0 (0)�

2 ≈ 0:44� (17)

where K3=2sgs K ′′′
0 (0)= 〈(@ũ1=@x1)3〉 [29]. The modi�ed Leonard’s term can be identi�ed with

the SFS (scale-similarity model) and its Taylor’s series expansion [28] yields the gradient
model (Equation (5)). Closure of Equation (5) with the rate-of-strain tensor produces exactly
the same amount of dissipation (ref. Appendix B) as above in (17). It must be noted that
original calculations of Leonard [15] (based on non-Galilean invariant term) did not satisfy
the dissipation criteria which was restored by using the second-order derivative [18] terms.

3.2. Modi�ed Reynolds’ term (R)

Information of the modi�ed Reynolds’ term cannot be obtained directly in physical space.
But, in spectral space closed integrals are available for the non-local expansion involving
triad interaction of References [12, 21]

k � kc; k′ ∼k′′¿kc

The above interaction is a component of modi�ed Reynolds’ stresses as evident from Equa-
tion (14). The EDQNM approximations of the forward (F = cf �) and backscatter (B = cb�)
in this limiting case are [10, 24] such that∫ kc

0
[F(k)− B(k)] dk≈ 0:56� (18)

3.3. Modi�ed cross term (C)

This term (from Equation (14)) corresponds to the near-local expansion which represents the
interaction in the wavenumber range:

k∼kc; (k′ or k′′)∼kc and (k′′ or k′)� kc

Unfortunately, no analytic integration can be performed for the above expansion [21], thus
not much information can be drawn for the cross terms. However, a rough estimate of the
net dissipation yields �C ≈ 0.

� = �L + �C + �R

[≈ 0:44�] [≈ 0] [≈ 0:56�]
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The above estimate is in accordance with the numerical results [1, 30] which shows that
the forward and backscatter via the cross term, diverge across the cut-o� wavenumber but,
cancel each other exactly. Although, cross stresses do not change the net energy of the
system but, e�ects the evolution of resolved scale motion [10]. The modelling of these terms
independently to reproduce the divergence e�ect cannot be achieved. However, the combined
e�ect of modi�ed Reynolds’ and cross terms show a cusp near cut-o� [30], leading to �nite
forward and backscatter transfers of energy. As non-local expansion is valid only in the
limiting case the backscatter over the whole wavenumber range can be approximated by
imposing local equilibrium [12]. The forward scatter can be modi�ed similarly by imposing
Equation (18) to obtain

cf = 0:736 and cb = 0:176 (19)

The above energy transfer coe�cients are identi�ed with the combined e�ect of the modi�ed
Reynolds’ and cross terms [8] and will be used in the model coe�cient computation.

3.4. Model coe�cients

To evaluate the model coe�cients we identify the model terms in Equation (12) with dif-
ferent energy transfer mechanisms discussed above. The third term is the Taylor’s expansion
of modi�ed Leonard’s term and it produces exactly the same amount of dissipation (ref.
discussion after Equation (17)). Thus �1 can be obtained immediately. The second term is
purely dissipative in nature and the model coe�cient C2s must account for the forward scatter
of energy cf whereas, �2 must be evaluated to produce the estimated backscatter (cb), ap-
proximated in Equation (19). The coe�cients are computed in the framework of canonical
case (ref. Appendix B) as presented in Table I. The model coe�cients for the mixed model
Equation (6) can also be computed following the above approach, where C2s now account for
the net energy transfer (cf − cb).
Table II presents the energy transfer by the model terms in a posteriori LES, discussed

later in the paper. It can be observed that although the coe�cients vary from the canonical

Table I. Model coe�cients of the SGS models obtained
from the canonical approach using the Gaussian �lter.

C2s �1 �2

Smagorinsky model 0.0256 — —
Mixed model 0.0162 1

12 —
Algebraic model 0.0213 1

12 0.03364

Table II. Energy transfer coe�cients by the model
terms in the homogeneous isotropic turbulence.

cf cL cb

Canonical case 0.736 0.44 0.176
Isotropic decaying 0.82 0.325 0.145
Forced isotropic 0.8 0.335 0.135
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case (for which the model coe�cients are calibrated), but are in acceptable limits. Overall, the
model terms depict the energy transfer mechanism, that they were attributed to, satisfactorily.
Thus the objective of developing a SGS model which can account for di�erent energy transfer
mechanism (independently) is ful�lled. In the following sections the performance of the AM
is assessed by comparison with the existing models.

4. EFFECT OF NONLINEARITY

The principal axes of the stress tensor and the strain-rate tensor are not parallel for most
�ows [7] and is a familiar analysis tool in RANS modelling [25]. The same idea can be
extended to the SGS modelling adopting a simpli�ed picture according to which the turbulent
subgrid scale �eld is locally subject to resolved strain or shear [8]. However, as the SGSs
depend on the applied �lter width the results cannot be compared with the experimental
results (which are the Reynolds’ stresses). However, the a priori analysis, for the rapid
straining of turbulence [16], show that the anisotropic SGSs assume the same ratio as that
of Reynolds stresses, over a wide range of �lter width. Thus a SGS model should depict the
same anisotropic stress ratio as that of the Reynolds’ stresses [8, 31]. The simplest cases for
which the normal anisotropic stresses show departure from the linearity are the plane shear
and plane strain �ows. For these cases the non-zero velocity gradient components are

plane shear �ow:
@ũ1
@x3

=C

plane strain �ow:
@ũ1
@x1

=C;
@ũ2
@x2

= − C

Substituting these velocity gradient components in the SGS models Equation (12) with model
coe�cients in Table I, the anisotropic stress ratios obtained are presented in Table III
(compared with experimental values of Tavoularis and Corrsin (1981) and Gence and Mathieu
(1979) for plane shear and strain �ows, respectively, see Reference [24] for related refer-
ences). As is evident the SM fails to predict the stress anisotropy in both the cases. The
MM shows some stress anisotropy, however, the best results are obtained for the AM. These
results encourage the addition of the backscatter term over the MM.

Table III. Anisotropic stress ratio for homogeneous plane shear and
plane strain �ows.


11:
22:
33 Plane shear Plane strain

Experimental 0.2 : −0.06 : −0.14 0.23 : −0.16 : −0.07
Linear model 0.23 : −0.23 : 0.0
Mixed model 0.2 : −0.1 : −0.1 0.23 : −0.092 : −0.138
Algebraic model 0.2 : −0.05 : −0.15 0.23 : −0.155 : −0.075
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5. ISOTROPIC TURBULENCE CASES

Numerical simulations has been performed for isotropic decaying and forced isotropic tur-
bulence in a periodic cubic box of side 2�. The governing equations are solved using a
pseudo-spectral code, where 3/2-rule is used to remove the aliasing error along homoge-
neous directions, and a second-order Runge–Kutta scheme for time evolution [32]. The initial
velocity �elds for these cases are generated following Rogallo [32]. For the decaying tur-
bulence the energy spectrum is obtained from the experimental results of Comet-Bellot and
Corrsin (CBC) (cf. Reference [32]) (Re=1346), whereas for the forced turbulence case the
Kolmogrov’s −5=3 spectra is used. The mean velocities in these cases are taken to be zero,
by specifying the velocity components for the wavenumber (k=0) to be zero. Thus only
the turbulent scales of motion are resolved in these cases. The initial random phases adjust
themselves to physically acceptable values in the beginning of the simulation, leading to a
transient period. The dynamic Smagorinsky model coe�cient stabilize to C=0:03 (for �lter
width ratio of 2) [32] at the end of the transient phase. Thus the results using SM were
obtained using this constant value. For the MM and the AM �lter width (�) is chosen such
that G(kc)=0:8 [33] (the transfer function at cut-o� where kc is based on grid scale) as
the model coe�cients were obtained for the Gaussian �lter. The simulations also help to
assess the capability of AM terms in depicting the energy transfer mechanism, as shown
in Table II.

5.1. Decaying turbulence

Isotropic decaying turbulence serves as an important benchmark for studying the energy trans-
fer capability of the SGS model. Here, simulations have been performed for three di�erent
grid resolutions 323, 483 and 643. Figure 2 compares the evolution of the resolved scale ki-
netic energy for the three models considered. A simulation without any SGS model (NM)
is also performed on 323 grid to emphasize on the contribution of these stress terms. NM
case does not dissipate energy properly and leads to energy pile up across cut-o� wavenum-
ber. It can be observed that SM is more dissipative than the AM followed by the MM.
More insight on this behaviour of the models can be obtained from the comparison of the
energy spectrum, shown in Figure 3. The AM has more energy in the higher wavenumber
range than the MM and the SM, thereby predicting more energy overall. This is due to the
inclusion of the explicit backscatter term. AM predicts a wider inertial subrange than the
other two models and thus captures the energy transfer better. The MM behaves more like
AM and certainly provides improvement over SM. The transfer spectra of di�erent terms
of the AM (12) are presented in Figure 4. The eddy viscosity term dissipates energy from
all resolved scales whereas, the Leonard’s term dissipates more energy from intermediate
wavenumber range. As is seen the energy input by the backscatter term is not localized to
small wavenumbers but increases across cut-o� wavenumber [30] thus, backscatter occurs in a
realistic fashion.

5.2. Forced turbulence

The statistically stationary homogeneous turbulence, provides an ideal framework to study
the capability of a turbulence model to predict the universal Kolmogrov’s energy spectrum
[11, 27]. The turbulence �eld is simulated by adding a forcing (fk) to the lower wavenumber
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Figure 2. Resolved scale kinetic energy (TKE) evolution for: (a) 323 grid; (b) 483 grid; and (c) 643 grid
cases using: —–: SM; - - - -: MM; ◦ : AM; + : no model; � : experimental [32].
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Figure 3. Energy spectra for 643 grid case at: (a) t=1:53; and (b) t=2:7 obtained from: —–: SM; - - - -:
MM; ◦: AM; — ·—: experimental [32]; straight line: k−5=3.

modes of Navier–Stokes equations de�ned as

fk =
�
N
u k

|u k |2
where � is the energy injection rate and N is the number of Fourier modes in the shell |k|= k0
that are excited. For all the simulations presented here, k0 = 2 is chosen. The simulations have
been performed on three grid resolutions 323, 483 and 643 for in�nite Reynolds number. Thus
the energy transfer and dissipation occurs via the SGS terms only. On the coarse grid of
323 two energy injection rates �=0:1 and 0.2 have been considered, whereas other simu-
lations are performed for �=0:1 only. Simulation on the �ne grid 643 has been performed
only using the AM. Figure 5 compares the Kolmogrov’s constant, Ck = E(k)�−2=3k5=3, pre-
dicted by the SGS models, where energy spectra is averaged over a su�ciently long period
of time, after the statistical equilibrium, to obtain the mean values. The experimentally mea-
sured values of Ck are in the range 1.3–2.1 [10] in the inertial subrange. All the simulations
show that Ck vary about 1.5, as observed by other authors [11]. The AM predicts �atter
Ck pro�le followed by the SM and MM. The turbulent cascade develops independent of the
amount of energy injected into the system as evident from the coarse grid simulation. All the
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Figure 4. Energy transfer spectra for 643 grid case at: (a) t=1:53; and (b) t=2:7 obtained from:
—–: eddy term; - - - -: modi�ed Leonard’s term; — ·—: backscatter term.

models provide a steeper power law spectrum than Kolmogrov’s. The best �t seems to be
(∝)k−m where m=1:95 for SM and 1.9 for both MM and AM, as shown in Figure 6 for
the AM cases.

6. TURBULENT CHANNEL FLOW SIMULATION

In this section the AM is applied to the plane channel �ow simulation at three Reynolds num-
bers (Re�: based on friction velocity and half channel width) 180, 395 and 590 referred to as
cases I, II and III, respectively. The domain sizes in the streamwise, wall normal and spanwise
directions are (4�× 2× 4�=3) for case I and (2�× 2×�) for cases II and III. The domain
lengths considered in the simulations are same as those of the DNS [22] which ensures that the
streamwise and spanwise turbulence �uctuations remain uncorrelated along these homogeneous
directions. For low Reynolds number case results have been compared with those of Smagorin-
sky (SM) and dynamic (DSM) models. Simulation without any turbulence model has also
been performed (NM) to emphasize the e�ect of turbulence modelling. For higher Reynolds
number cases results are compared only with DSM. Simulation on �ner grid are also performed
for the simulation using AM (referred to as AMb) to study the grid re�nement e�ect. The
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Figure 5. Kolmogrov’s constant for: (a) 323 grid; and (b) 483 and 643 grid
cases. - - - -: SM (�=0:1); ◦ : SM (�=0:2); — ·—: MM (�=0:1); : MM

(�=0:2); ——— and ×: AM (�=0:1); + : AM (�=0:2).

parameters for the simulations are presented in Table IV. The numerical resolution su�cient
to capture the near-wall streaks or burst (�+

x ¡ 80, �+
z ¡ 30 and �+

y ¡ 2: for the �rst grid
cell) [34], is satis�ed in all the simulations and is also comparable to other LES available in
References [3, 35, 36].
The governing equations are solved using Fourier–Galerkin method in the homogeneous

streamwise and spanwise directions, and second-order �nite di�erence scheme in the wall-
normal direction. Time advancement is performed using the fractional step method. A modi�ed
third-order Runge–Kutta step is used for explicit terms, and second-order Crank–Nicholson
scheme for the implicit terms. The nonlinear terms in the SGSs are treated explicitly. Com-
putations are performed on a rectangular staggered grid which is uniform in the spanwise
and streamwise directions and hyperbolically stretched along the wall-normal direction. The
aliasing error, along homogeneous directions, is removed using the 3=2 rule. The channel
�ow is governed by the constant pressure gradient, which is applied as a forcing term
in the governing equations chosen appropriately to balance the targeted wall shear
stress [35].
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Figure 6. Energy spectrum compared with the power law for AM. —–: k−1:9; - - - -: 643 grid;
◦ : 483 grid; + : 323 grid (�=0:1); : 323 grid (�=0:2).

Table IV. Simulation parameters for the channel �ow experiments.

Case Model Grid �+
x �+

z �+
y;min �+

y;max

DNS [22] 128× 129× 128 17.7 5.9 — 4.4
I NM, SM, DSM, AM a 32× 65× 32 70.68 23.56 0.63 11

AM b 48× 65× 48 47.12 15.71 0.63 11

DNS [22] 256× 193× 192 10. 6.5 — 6.5
II DSM, AM a 48× 73× 48 51.70 25.85 1.22 20.38

AM b 64× 73× 48 38.78 25.85 1.22 20.38

III DNS [22] 384× 257× 384 9.7 4.8 — 7.2
DSM, AM a 64× 97× 64 57.92 28.96 1.35 22.85

The model coe�cients obtained in the restricted framework of the isotropic homogeneous
turbulence are not capable to account for the �ow inhomogeneity [36]. Thus, to account
for the near-wall e�ect Van-Driest-type damping function [37] is used. In the simulations
the �lter width � is obtained based on the geometric average of mesh spacing in Carte-
sian directions �=(�x�z�y(y))1=3. Because of the inhomogeneity of the grid in the wall-
normal direction the commutative property of the �ltering and derivative operation does
not hold, which is one of the assumption involved in deriving Equation (2).
Authors acknowledge the fact that such ad hoc modi�cations are not suitable for LES sim-
ulation [5]. However, the results based on these assumptions are worth reporting and will
form the basis of future improvements to the model. For the Smagorinsky model, coe�-
cient Cs = 0:01 is recommended for channel �ow which is used in this paper. The dynamic
model coe�cient evaluation of the Smagorinsky model [4] computes the coe�cient Cs�2
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Figure 7. Pro�les of shear stresses using AMa (case I). - - -: turbulent (〈−u′v′〉+ 〈�uv〉); — -—: viscous
(1=Re〈@ũ=@y〉); —: total stress (turbulent + viscous).

using explicit �ltering along homogeneous directions, numerically performed using Simpson’s
rule [35].
The arti�cial initial velocity �eld is obtained by imposing random phase perturbations

over the fully developed mean channel �ow. The phases adjust themselves initially dur-
ing a transient period. A statistically steady state is identi�ed by nearly periodic nature of
the wall stresses and by the straight line behaviour of the total shear stress as shown in
Figure 7. To obtain a better statistical sample the running averages (〈:〉: both plane and
time averaged) of the turbulent quantities are computed after the statistically steady state
is reached.
The numerical results are �rst presented for the mean properties, including streamwise mean

velocity pro�le and shear stress. Accurate predictions of these quantities are necessary, but
not su�cient to access the model performance as suggested by Zang [34]. Hence, the re-
sults are further interrogated for turbulence intensities and higher-order statistics. The e�ect
of subgrid scales can be estimated for the turbulence intensities but not for higher-order statis-
tics, thus only qualitative analysis has been performed for the latter. Finally, the dissipation,
�= −〈�ijD̂ij〉, produced by the AM is compared with other models. The capability of the AM
to represent backscatter is also highlighted.

6.1. Mean properties

Mean skin friction coe�cients obtained in all the AM and DSM simulations agree well
(within 1–2%) of the target values but, SM underestimates its value considerably (about 5%)
whereas the NM case overestimates by 8%. The pro�le of the mean streamwise velocity �eld
has been shown in Figure 8. For case I, both the DSM and the AMa simulations produce
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Figure 8. Mean streamwise velocity pro�le (u+ = u=u�). — -—: NM; - - - : SM; : DSM;
◦ : AMa; + : AMb; — : DNS [22].
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Figure 9. Reynolds stress (〈−u′v′〉+ 〈�uv〉) normalized by u2� compared with
DNS result. Same key as Figure 8.

good results in the sublayer, bu�er layer and log layer regions. However, the Smagorinsky
model deviates from the log pro�le and NM underpredicts the velocity pro�le considerably.
The AMb simulation predicts slightly lower wall stresses thereby predicting larger intercept
in log layer. This pro�le matches exactly with the DNS data, where the larger intercept is
regarded as the low Reynolds number e�ect [22]. In cases II and III the mean velocity pro�le
from both the AM and DSM are in good agreement with the DNS results and grid re�nement
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Figure 10. RMS values of streamwise velocity �uctuations (u′) normalized
by u2� . Same key as Figure 8.

does not seem to have substantial e�ect. Figure 9 presents the Reynolds shear stress obtained
in the numerical simulations. Again, both the AM and DSM predict the stresses in good
agreement with the DNS results, whereas SM underpredicts its value and NM overpredicts its
value. The �ne grid simulation has the same behaviour as that of the coarse grid simulation in
accordance with the observation of Zang [34]. In case III, the AM results are slightly better
than that of the DSM for the shear stress.
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Figure 11. RMS values of wall normal velocity �uctuations (v′) normalized
by u2� . Same key as Figure 8.

6.2. Turbulence intensities

Turbulence intensities from the LES calculations are compared with the DNS data by tak-
ing into account the contributions from the SGSs [17]. Figures 10–12 show the root mean
square (rms) velocity �uctuation predicted by the various models. For case I, AMa predicts
the peak accurately, but deviates in the region away from the wall. On the other hand, DSM
shows good agreement away from the wall but underestimates the peak. Whereas, both NM
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Figure 12. RMS values of spanwise velocity �uctuations (w′) normalized by
u2� . Same key as Figure 8.

and SM results do not agree with the DNS results. The same behaviour is observed for
the other velocity components too. The results on a �ner grid AMb improves the coarse
grid results by predicting a better pro�le. For higher Reynolds number case both the AM
and DSM show similar results. However, the AM predicts the streamwise component better
than DSM. The AM predicts the peak of the velocity �uctuations better than DSM in
the simulations.
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Figure 13. Skewness factor for case II: (a) S(u′); (b) S(v′); and (c) S(w′). Same key as Figure 8.

6.3. Higher-order statistics

Skewness and �atness factors are de�ned as (where repeated indices do not imply summation):

S(u′
i)=

〈u′3
i 〉

〈u′2
i 〉3=2

; F(u′
i)=

〈u′4
i 〉

〈u′2
i 〉2
; i=1; 2; 3
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Figure 14. Flatness factor for case II: (a) F(u′); (b) F(v′); and (c) F(w′). Same key as Figure 8.

Comparison of these higher-order statistics of turbulent �ow are considered stringent require-
ments for the LES modelling approach [34]. A perfect agreement of LES statistics with DNS
is not expected as the subgrid contributions cannot be estimated [6], thus only the qualitative
nature of the results will be discussed. Since the small scales tend to be more homoge-
neous and isotropic than the larger ones, their e�ect should be to decrease skewness. All
the cases show similar qualitative behaviour, so pro�les for case II are only presented in
Figures 13 and 14.
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Figure 15. Plane average subgrid dissipation: (a) case I; (b) case II; and (c) case III. — -— : SM;
- - -: DSM; — : AMa; – ◦ – : backscatter using AMa.
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Figure 16. Plane average isotropic subgrid dissipation for case III. - - - : DSM; — : AMa.

DNS results show that S(u′) is positive near the wall and negative away from the wall, due
to the interaction of high-speed �ow away from the wall and the low-speed �ow near the wall.
This behaviour of S(u′) is captured by all the models. The positive region is overpredicted in
all the simulations, most by SM and least by AM. The results on a �ner grid, AMb, exhibit
the best pro�le. Due to the presence of strong negative v′ motion [38] in the bu�er region,
S(v′) is negative locally, as seen in all the simulations. The simulation using AM predicts
the negative peak better than both the SM and DSM. Prediction of the width of the negative
skewness region is best for AM and worst for SM. S(w′) should be zero because of the
�ow symmetry along the spanwise direction [6]. The results in all of the simulations vary
but stay close to this value. The AM provides better qualitative results, followed by DSM
and SM.
At the wall the turbulence is highly intermittent leading to large �atness. Since the ef-

fect of SGS motion is to increase these values numerical results should underpredict the
values. Both the DSM and SM overpredicts the value of F(u′) near the wall, whereas
the AM performs much better. For the other two components, F(v′) and F(w′), both AM
and DSM fail to predict higher values at the wall and show similar behaviour, this may
be due to substantial contribution of SGS motion near the wall. In the region away from
the wall the �atness values converge to 3, which correspond to the value of a Gaussian
distribution. The grid re�nement improves the pro�le in case I, but not much in
case II.

6.4. SGS dissipation

As seen in Figure 15, the nonlinear model provides backscatter independently via the fourth
term on the RHS of Equation (12). The amount of backscatter is slightly less than that
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Figure 17. The subgrid dissipation provided by three terms of algebraic model (12): (a) cf ;
(b) cL; and (c) cb. ◦ : case I; � : case II; + : case III; SOLIDS: AMb.
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obtained by Terracol and Sagaut [36] and peaks at y + =30 as compared to y + =12 pre-
dicted from a priori analysis [6]. The reason for this might be the use of ad hoc damping
function. Near the wall, eddy viscosity term in the AM dominates over the other two terms
and produces most of the dissipation, whereas the modi�ed Leonard’s term produces forward
scatter nearly equal to the backscatter, which is about 40% of the net dissipation. The net
forward scatter of energy produced by the AM agrees qualitatively with the other models
and predicts the peaks correctly at about y + =12 [6]. However, AM is clearly the most
dissipative and produces twice the dissipation as that of SM and about four times than that
of the DSM. The dissipation produced by AM is comparable to that other numerical results
[36, 37]. Further analysis of the energy transfer between resolved and subgrid scale motion is
possible by separating SGS dissipation into the inhomogeneous component (�inh = −〈�ij〉〈D̂ij〉)
and the isotropic component (�iso = � − �inh) [7]. The inhomogeneous part represents the en-
hancement of SGS turbulence in the presence of mean-�ow gradients and is non-negative
throughout the channel, which is depicted by all the models. Whereas, in a priori analysis
the isotropic part shows a complicated nature and exhibit negative value in the bu�er layer
region [7]. Although the negative values are not obtained by any of the models, the AM
does give a pronounced kink in the sublayer region as shown in Figure 16. Prediction of
higher backscatter in the bu�er layer would have resulted in the negative values. Figure 17
displays the energy transfer coe�cient by the AM terms (12). The energy transfer coe�-
cients for all the simulations shows similar nature with values converging to a constant away
from the wall, which is di�erent from the values in isotropic cases based on which model
coe�cients were computed. However, the independence of the energy transfer characteristic
of the model terms over the range of Reynolds number suggests that these terms can be uti-
lized to predict backscatter accurately by adjusting the model coe�cients, as addressed in the
conclusions.

7. CONCLUSIONS

The algebraic model proposed in this paper is obtained from the second-order approximation
of the subgrid stress constitutive equation. The model thus obtained has an additional term over
the mixed model, which provides distinct modelling of the backscatter of energy. The unknown
model coe�cients are computed for the canonical case such as to produce appropriate amount
of dissipation through modi�ed Leonard’s, cross and Reynolds’ terms. In a posteriori analysis
the energy transfer coe�cients of the model terms are in close agreement with the canonical
case, thus the model terms perform as expected. For the isotropic decaying turbulence AM is
found to be less dissipative than the SM, this is due to the explicit backscatter term which
leads to more energy in the higher wavenumber range, thereby overpredicting the total resolved
scale kinetic energy. Although SM provides better approximation of the overall dissipation,
the energy transfer capability of the AM is better than both the MM and the SM, and has a
wider inertial subrange. In the forced isotropic case AM performs better than both the SM and
MM in predicting Kolmogrov’s constant. The results of AM is a slight improvement over the
MM for isotropic turbulence cases, but the addition of the backscatter term vastly improves
the capability of the model to reproduce the normal stress anisotropy, as is evident from the
results of the homogeneous plane shear and plane strain �ows.
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To test the ability of the model to predict the near-wall turbulent structures, turbulent plane
channel simulations were performed over a range of Reynolds number (Re�=180; 395; 590).
The predictions of the AM have been compared with dynamic model, Smagorinsky model
and the DNS data. Both the algebraic and dynamic models predict the mean �ow quantities
better than the Smagorinsky model. The AM provides better prediction of the turbulence
intensities than the dynamic model. The results on �ner grid using AM for Re�=180 is
able to predict the exact DNS velocity pro�le, regarded as the low Reynolds number e�ect.
Qualitative analysis of the higher-order statistics, skewness and �atness, show that both the
dynamic and algebraic models capture the nature of the pro�le. However, the results of the
AM are closer to the DNS data than the dynamic model. Results show that the AM is more
dissipative than the Smagorinsky and dynamic models. This is due to the higher value of
the eddy viscosity coe�cient. Capability of the model in producing backscatter independently
via the modelled backscatter term is also evident. The model predicts a kink in the isotropic
dissipation pro�le, but fails to predict a negative value in the bu�er layer. This is due to the
use of a damping function in the near-wall region, which restricts the maximum backscatter to
occur in the bu�er layer. The AM is based only on �rst-order derivative term and has constant
model coe�cients, so the computation of stresses in numerically inexpensive. Estimate of the
CPU time show that AM requires ∼3% more time than SM, whereas dynamic modelling
approach is ∼12% more expensive.
The numerical results suggest a better estimate of the model coe�cients are still required

for the model. The model coe�cients computed in the framework of isotropic turbulence
cannot be extended to near-wall �ows thus model coe�cient cannot be predicted accurately,
a priori, for the model. However, the dynamic model coe�cient evaluation will make the
model sensitive to the local state of the �ow and suitable for more complex simulations. Fur-
ther, the cross terms are modelled along with the Reynolds stresses and their characterization
is still a challenge for SGS modelling.

APPENDIX A: ALGEBRAIC STRESS CLOSURE

Taking the divergence of the governing equations, the Poisson’s equation of the pressure can
be obtained. The integral solution of the Poisson’s equation using Green’s theorem yields
[25],
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where the �rst term in the integral is the contribution from the sugrid terms only (return
term), whereas the second term depends explicitly on the gradient of resolved velocity �eld
(rapid term). The last term involves integral over the surface of domain � and is called
the wall term. These terms are modelled as a functional of resolved scale following Launder
(cf. Reference [25], neglecting the wall term) such that,
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Here, c1; �; 	 and � are constants and
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Similarly, the di�usion term Fij are expressed in terms of subgrid correlation (cf. Reference
[25]) as
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)]
Further, neglecting the last two terms on RHS (cf. Reference [25] for discussion) yields,

Fij=TijD

This assumption leads to the simpli�ed form of the algebraic stress closure Equation (9).
Lastly, the dissipation term is modelled in isotropic form, i.e.

�ij= 2
3��ij

The other assumption involved in obtaining Equation (9) is that the derivative of Tij is
vanishingly small [25] which is based on the structural equilibrium.

APPENDIX B: CANONICAL FLOWS

For homogeneous isotropic turbulence the general fourth- and sixth-order tensors yields [8]
(where 〈:〉 implies emsemble average),
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@ũi
@xk

@ũj
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Estimation of the above quantities requires the following integral, obtained assuming an in�nite
inertial subrange with Kolmogrov’s energy spectrum [2, 15].
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where | �G (k) | = e−�
2k2=24 for Gaussian �lter and 	 (:) is the gamma function. The results

in this paper are obtained using appropriate values of the skewness factor (Sk =0:4) and
Kolmogrov’s constant (Ck =1:62).
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